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Extracting knowledge from the World Wide Web
Monika Henzinger* and Steve Lawrence

Google, Inc., 2400 Bayshore Parkway, Mountain View, CA 94043

The World Wide Web provides a unprecedented opportunity to
automatically analyze a large sample of interests and activity in the
world. We discuss methods for extracting knowledge from the
web by randomly sampling and analyzing hosts and pages, and by
analyzing the link structure of the web and how links accumulate
over time. A variety of interesting and valuable information can be
extracted, such as the distribution of web pages over domains, the
distribution of interest in different areas, communities related to
different topics, the nature of competition in different categories
of sites, and the degree of communication between different
communities or countries.

The World Wide Web has become an important knowledge
and communication resource. As more people use the web

for more tasks, it provides an increasingly representative and
unprecedented in scale machine-readable sample of interests
and activity in the world.

However, the distributed and heterogeneous nature of the web
makes large-scale analysis difficult. We provide an overview of
recent methods for analyzing and extracting knowledge from the
web, along with samples of the knowledge that can be extracted.

Sampling the Web
The sheer size of the web has led to a situation where even simple
statistics about it are unknown, for example, its size or the
percentage of pages in a certain language. The ability to sample
web pages or web servers uniformly at random is very useful for
determining statistics. For example, we can use random URLs
to estimate the distribution of the length of web pages, the
fraction of documents in various Internet domains, or the
fraction of documents written in various languages. We can also
determine the fraction of web pages indexed by various search
engines by testing the engines for the presence of pages chosen
uniformly at random.

Random Walk. One approach to sample web pages approximately
uniformly at random is based on the idea of a random walk,
where we take successive steps in random directions. Henzinger
et al. (1) have performed several such random walks on the web.
Their main idea is to perform a random walk so that a page is
visited by the walk with probability roughly proportional to its
PageRank (2) value, and then to sample the visited pages with
probability inversely proportional to their PageRank value.
Thus, the probability that a page is sampled is a constant
independent of the page.

One definition of the PageRank value of a web page uses a
random walk: The initial page of the walk is chosen uniformly at
random from all pages. Assume the random walk is at page p at a
given time step. With probability d, follow an outlink of paper p,
chosen uniformly at random. With probability 1 � d, select a
random page out of all pages. The PageRank of a page p is the
fraction of steps that the walk spent at p in the limit, i.e., the
PageRank is the stationary distribution of the random walk.

When trying to implement this random walk to generate
random web pages, two problems arise: (i) The random walk
assumes already that we can find a random page on the web, the

very problem that we want to solve. (ii) Many hosts on the web
have a large number of links within the same host and very few
leaving them. If such a host is encountered early in the walk, then
there is a good chance that most pages are from this host when
the walk is stopped, i.e., the walk ‘‘never found its way out of the
host.’’ The main culprit is that any implementation can only take
a finite number of steps, whereas the definition requires an
infinite number.

To avoid these problems, Henzinger et al. (1) proposed and
implemented the following modified random walk: Given a set of
initial pages, choose one page at random to be the start page.
Assume the random walk is at page p at a given time step. With
probability d, follow an outlink of page p, chosen uniformly at
random. With probability 1 � d, select a random host out of all
hosts visited so far, and jump to a randomly selected page out of all
pages visited on this host so far. In this definition, all pages in the
initial set are also considered to be visited.

The two problems are avoided as follows: (i) Instead of
choosing a random page out of all pages, a random page from a
subset of visited pages is chosen. (ii) Instead of jumping to a
random page, the walk jumps to a random host and then to a
random visited page on that host. In this way, even a host that
has dominated the walk so far only has the same chance of being
visited as any other visited host.

Because of the modification in the walk and because of the fact
that the walk has to be finite in practice, the modified random
walk visits a page with probability approximately proportional to
its PageRank value, which is the stationary distribution of the
PageRank random walk.

Afterward, the visited pages are sampled with probability
inversely proportional to their PageRank value. If the PageRank
value is not known, it can be approximated by computing
PageRank on the graph of visited pages. Alternatively, the visit
ratio, i.e., the ratio of the number of times the page was visited
over the length of the random walk, can be used as an approx-
imation of the PageRank value. The latter holds because the
PageRank value of a page is defined to be the visit ratio of the
PageRank random walk in the limit.

As an example of the statistics we can generate by using this
approach, Table 1 shows the percentage of URLS in each
top-level domain in fall 1999 generated with this method. Other
approaches for sampling web pages based on a random walk
methodology are presented in Bar-Yossef et al. (3) and Rus-
mevichientong et al. (4).

IP Address Sampling. An approach to obtaining a random sample
of web servers is to randomly sample IP addresses, testing for a
web server at the standard port (5). There are currently 2564

(�4.3 billion) possible IP addresses. If IPv6 was widely used on
the web, this approach may not be possible; however, IPv6 has
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not been widely adopted and this approach is still practical today.
Of the 4.3 billion possible IP addresses, some are unavailable and
some are known to be unassigned. Many sites are temporarily
unavailable due to Internet connectivity problems or web server
downtime. To minimize this effect, all IP addresses can be
checked multiple times.

This method finds many web servers that would not normally
be considered part of the publicly indexable web. These include
servers with authorization requirements (including firewalls),
servers that respond with a default page, servers with no content
(e.g., sites ‘‘coming soon’’), web hosting firms that present their
homepage on many IP addresses, printers, routers, proxies, mail
servers, CD-ROM servers, and other hardware that provides a
web interface. Many of these can be automatically identified, for
example, by using regular expressions.

A number of issues lead to minor biases. The sample corre-
sponds to the subset of servers that are active and respond to
requests at the polling times. It is possible for one IP address to
host several web sites, multiple IP addresses may serve identical
content, and some web servers do not use the standard port. It
is common for large sites to use multiple IP addresses that serve
the same content (for load balancing and redundancy). This
could potentially result in a higher probability of finding larger
sites. To minimize the bias, we can use the domain name system
to identify multiple IP addresses serving the same content, and
consider only the lowest numbered address to be part of the
publicly indexable web. Most major sites are not virtually hosted,
and few public servers operate on a nonstandard port.

Fig. 1 shows a sample of the results of this approach, showing
the distribution of server types found from sampling 3.6 million
IP addresses in February 1999 (5). About 83% of servers were
commercial, whereas �6% of web servers were found to have
scientific�educational content (defined here as university, col-
lege, and research laboratory servers).

Also analyzed in the same study was metadata usage on the
homepages of each server, where the results showed that only
34.2% of servers contained the common ‘‘keywords’’ or ‘‘de-
scription’’ metatags on their homepage. The low usage of the
simple HTML metadata standard suggests that acceptance and
widespread use of more complex standards, such as XML or
Dublin Core, may be very slow (0.3% of sites contained meta-
data using the Dublin Core standard). High diversity was also
noted in the HTML META tags found, with 123 distinct tags,
suggesting a lack of standardization in usage.

Discussion. Unfortunately, current techniques for sampling web
pages exhibit biases and do not achieve a uniform random

sample. The main problem with the approaches based on
random walks is that any implementation is limited to a finite
random walk. The main challenge when using IP address sam-
pling is how to subsample the pages that are accessible from a
given IP address.

As the web grows it has become impractical to retrieve all
pages. Thus, it becomes more important to be able to uniformly
sample pages to measure properties of the web. One pragmatic
approach is to use two or more approaches that have different
biases, for example, a random walk approach and an approach
based on IP address sampling, and analyze the agreement
between their results.

A fundamental question is what should be counted. For
example, consider a web site that contains 10 million pages
containing weather statistics for different points in time, com-
pared to another containing the same statistics all on one page.
Likewise, a research paper on the web may be on one page or
split over multiple pages (6). Additionally, there can be many
pages that do not contain original content, they may be trans-
formations of content on other pages (extensions to methods for
identify similar document such as ref. 7 can be valuable), or even
randomly generated pages. This suggests that some measure of
importance may be incorporated into the analysis; for example,
we may consider creating a random sample of items that have at
least n links to them from other sites, where an item may be a
single web page or a collection of web pages (for example, the
entire 10 million pages in the weather statistics example).
Analysis of web sites as opposed to individual pages is also
helpful here.

Analyzing and Modeling Web Growth
We can also extract valuable information by analyzing and
modeling the growth of pages and links on the web. Several
researchers (8–11) have observed that the link distribution of
web pages follows a power law: the probability that a randomly
selected web page has k inlinks is proportional to k � �, where

Table 1. The top 10 top-level domains according to the
percentage of sampled pages in each domain

Domain Percentage of pages

com 46.93
edu 9.27
org 8.59
net 4.74
jp 3.51
de 3.17
gov 2.92
uk 2.75
ca 1.95
au 1.69
us 1.67
fr 0.81

jp, Japan; de, Germany; uk, United Kingdom; ca, Canada; au, Australia; us,
United States; fr, France.

Fig. 1. The distribution of information on publicly indexable web servers.
About 83% of servers contained commercial content (e.g., company
homepages). The remaining classifications are shown above. Sites may have
multiple classifications.
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� � 2.1. The outlink distribution follows a power law with � �
2.72. This observation led to the design of various models for the
web graph. We describe two models, namely, the preferential
attachment model by Barabási and Albert (8, 9) and the copy
model by Kleinberg et al. (12). We also describe two extensions
of these models to better account for deviations of the model
from observations.

Preferential Attachment. Barabási and Albert (8, 9) attribute
power law scaling to a ‘‘rich get richer’’ mechanism called
preferential attachment. As the network grows, the probability
that a given node receives an edge is proportional to that node’s
current connectivity. Specifically, Barabási and Albert propose
the following (undirected) web graph model.
Growth. Starting with a small number m0 of nodes, at every time
step add a new node u with m � m0 edges.
Preferential attachment. When choosing the nodes to which the new
node connects, we assume that the probability p that a new node
will be connected to node u depends on the degree ku of node
u, such that p � ku��node w kw.

An analysis based on mean-field theory shows that the prob-
ability for a randomly selected node to have k inlinks in this
model is proportional to k � 3. More specifically, for a node u
created at time step tu, the expected degree is m(t�tu)0.5. Thus,
older pages get rich faster than newer pages, leading to a ‘‘rich
get richer’’ mechanism.

This model explains the observed power law inlink distribu-
tion. However, the model exponent is 3, whereas the observed
exponent is 2.1. Additionally, it is not known that older web
pages gain inlinks faster than new pages. Finally, different link
distributions are observed among web pages of the same cate-
gory, which we discuss below.

Competition Varies. The early models fail to account for signifi-
cant deviations from power law scaling common in almost all
studied networks. For example, among web pages of the same
category, link distributions can diverge strongly from power law
scaling, exhibiting a roughly log-normal distribution. In earlier
models predicting a power law distribution, most members of a
community fare poorly; they have none or very few links to them.
However, for actual distributions, many community members
can have a substantial number of inlinks, with the mode of the
distribution varying up to �800 links for universities. Moreover,
conclusions about the attack and failure tolerance of the Internet
based on the early models may not fully hold within specific
communities.

The distributions for outbound web links, and for a variety of
other social and biological networks, also display significant
deviations from power law (8, 10, 11, 13, 14).

Pennock et al. (15) introduced a new model of network growth,
mixing uniform and preferential attachment, that accurately
accounts for the true connectivity distributions found in web
categories, the web as a whole, and other social and biological
networks. Previous models imply a drastic ‘‘winners take all’’
scenario on the web, whereby highly referenced pages continue
to grow richer in links, whereas new entrants languish in
comparison. In fact, the situation is not so inequitable when
examined at a local rather than a global level.

Pennock’s model generalizes the Barabási–Albert model to
incorporate both preferential attachment and a uniform baseline
probability of attachment. The model predicts the observed
shape of both the body and tail of typical connectivity distribu-
tions, including those observed within specific categories of web
pages where the divergence from power law is especially marked.
In the model, larger modes arise from faster rates of growth of
edges as compared to vertices, suggesting an explanation for the
different modes observed within different categories of web
pages.

Pennock’s model can be used to analyze competition in
different categories on the web. Fig. 2 shows the degree of
preferential growth for web sites in different e-commerce cat-
egories. The publications e-commerce category is the most
competitive, where in this case we use competitive to mean that
it is harder for a new site to compete with existing sites. The
photographers category is the least competitive. There are
multiple factors that can lead to the differences in competition
that we see. For photographers, one likely factor is their local
nature: photographers typically serve only a local community,
and those serving different areas usually do not compete.
Another factor may be that people looking for photographers
use methods other than the web more often (e.g., referrals from
friends). Perhaps because people typically use professional
photographers rarely, they are also less likely to create and share
information among related sites on the web.

A number of models related to Pennock’s model have been
proposed: Dorogovtsev et al. (16) and Levene et al. (17) inde-
pendently propose similar generalizations of the Barabási–
Albert model (the addition of a uniform component), motivating
it in part as a natural way to parameterize the power-law
exponent. Albert and Barabási (18) have proposed their own
augmented model that involves a parameterized mixture of three
processes: vertex additions, edge additions, and edge rewirings.
The combination leads to a connectivity growth function that is
roughly a sum of uniform and preferential terms. Even Simon
(19) in 1955 invoked a similar process to explain Estoup–Zipf
word frequency distributions.

Kleinberg et al. (12) explained the power-law inlink distribu-
tions with a copy model that constructs a directed graph. A
slightly modified version as in ref. 20 works as follows: At each
time step, one new node u is added with d outlinks. The
destinations of these d links with source u are chosen as follows:
First, an existing node v is chosen uniformly at random. Then, for
j � 1, 2, . . . , d, the jth link of u points to a random existing node
with probability �, and to the destination of v’s jth link with
probability 1 � �.

Similarly to the Pennock et al. (15) model, this model is a
mixture of uniform and preferential influences on network
growth. A detailed analysis in ref. 20 shows that it leads to a
power law inlink distribution as well as to a large number of
bipartite cliques.

These models can be used to analyze the fault tolerance of the
networks. Recently, Park et al. (21) analyzed the Internet for
susceptibility to faults and attacks by using simulated data from
models similar to those above and with actual data. They find

Fig. 2. Competition in different e-commerce categories in March 2002.
‘‘More competitive’’ refers to tougher competition, i.e., it is harder to compete
with existing popular sites.
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that the Internet is becoming more preferential as it evolves: it
is more robust to random failures but is also more vulnerable to
attacks.

All of the current models of web growth are an approximation
- the true nature of growth on the web is more complex. It is
notable that relatively simple models can quite accurately re-
produce the actual distributions and behavior of the networks.
However, an open problem is refining the models to further
improve their accuracy.

The Hostgraph Model. The web is a hierarchically nested graph,
with domains, hosts, and pages introducing different levels of
affiliation. Instead of modeling the web at the level of pages, one
can also model it on the host or domain level. Using the host level
leads to the following hostgraph: Each node represents a host,
and each directed edge represents the hyperlinks from pages on
the source host to pages on the target host. Bharat et al. (22) show
that the weighted inlink and the weighted outlink distributions in
the host graph have a power law distribution with � � 1.62 and
� � 1.67, respectively. However, the number of small inlink hosts
is considerably smaller than predicted by the model, i.e., there is
‘‘f lattening’’ of the curve for low inlink hosts.

Bharat et al. (22) present the following modification to the
copy graph model, called the re-link model, to explain this
‘‘f lattening’’: At each time step, with probability � we select a
random already existing node u, and with probability 1 � � we
create a new node u. Then we add d new additional outlinks to
it. The destinations of these d links with source i are chosen as
follows: First, an existing node v is chosen uniformly at random.
Second, one picks d random outgoing edges from v. Then, for j �
1, 2, . . . , d, the jth link of u points to a random existing node with
probability �, and to the destination of v’s jth link with proba-
bility 1� �.

The difference to the copy model is that with probability 1 �
� no new node is added. Because new nodes start without inlinks
the number of low inlink nodes is reduced. Fig. 3 shows the
resulting inlink distribution for a graph of 1 million nodes with
d � 7 and � � 0.05 for various � values.

In a recent paper, Cooper and Frieze (23) actually proved that
an extension of a model very similar to the re-link model
generates graphs whose link distributions follow a power law.
Chakrabarti et al. (24) used a variant of the Bar-Yossef et al.
random walk together with a topic classifier to analyze the link
distributions of pages on the same topic.

Bharat et al. also analyzed affinity between top level country
domains in June 2001. Table 2 shows the 20 source domains with

the most outlinks together with the .com domain. For each
source domain, it lists the percentage of outlinks into the same
domain, into the .com domain, and into the four most highly
linked country domains from that source domain.

Communities on the Web
The web allows communities to rapidly form with members
spread out around the world. Identification of communities on
the web is valuable for several reasons. Practical applications
include automatic web portals and focused search engines,
content filtering, and complementing text-based searches. Com-
munity identification also allows for analysis of the entire web
and the objective study of relationships within and between
communities.

Flake et al. (25–27) define a web community as a collection of
web pages such that each member page has more hyperlinks (in
either direction) within the community than outside of the
community (this definition may be generalized to identify com-
munities with varying sizes and levels of cohesiveness). Com-
munity membership is a function of both a web page’s outbound
hyperlinks as well as all other hyperlinks on the web; therefore,
the communities are ‘‘natural’’ in the sense that they are
collectively organized by independently authored pages. They
show that the web self-organizes such that these link-based
communities identify highly related pages (Fig. 4).

Identifying a naturally formed community, according to
Flake’s definition, is intractable in the general case because the
basic task maps into a family of nonparametric–complete graph
partitioning problems (28). However, if one assumes the exis-
tence of one or more seed web sites and exploits systematic
regularities of the web graph (8, 30, 31), the problem can be
recast into a framework that allows for efficient community
identification using a polynomial time algorithm.

This is just one of many link-based approaches proposed for
identifying collections of related pages. Kumar et al. (11) con-

Fig. 3. Inlink distribution as predicted by the ‘‘re-link model’’ with varying
� values.

Table 2. Most frequently linked-to domains from
country domains

% of weighted outdegree

com self 1 2 3 4

com 82.9 net 6.5 org 2.6 jp 0.8 uk 0.7
au 27.0 58.8 uk 1.0 ch 0.5 ca 0.4 de 0.3
br 17.8 69.1 uk 0.4 pt 0.4 de 0.4 ar 0.2
ca 19.4 65.2 uk 0.6 fr 0.4 se 0.3 de 0.3
cn 15.8 74.1 tw 0.4 jp 0.2 de 0.2 hk 0.1
cz 8.1 82.4 sk 1.0 de 0.7 uk 0.4 ch 0.1
de 16.0 71.2 uk 0.8 ch 0.6 at 0.5 nl 0.2
dk 13.8 73.0 uk 1.1 de 1.0 int 0.7 no 0.7
es 38.9 42.3 de 1.3 uk 1.0 fr 0.5 int 0.3
fr 20.9 61.9 ch 0.9 de 0.8 uk 0.7 ca 0.5
it 19.3 64.6 de 1.0 uk 0.7 fr 0.4 ch 0.3
jp 17.4 74.5 to 0.8 cn 0.6 uk 0.2 de 0.1
kr 26.5 57.1 jp 0.6 uk 0.5 de 0.3 to 0.3
nl 21.2 61.7 de 1.3 uk 1.1 be 0.6 to 0.5
no 16.1 65.6 de 1.2 se 0.9 uk 0.7 dk 0.6
pl 4.2 92.2 de 0.2 uk 0.1 ch 0.1 nl 0.1
ru 10.0 84.9 ua 0.4 su 0.2 uk 0.2 de 0.2
se 22.6 60.0 nu 1.6 uk 0.9 de 0.7 to 0.6
tw 22.0 66.0 to 1.3 au 0.6 jp 0.6 ch 0.4
uk 34.2 45.9 de 0.7 ca 0.5 jp 0.3 se 0.3
us 34.4 33.1 ca 0.6 uk 0.5 au 0.2 de 0.2

Domains are listed in boldface. au, Australia; br, Brazil; ca, Canada; cn,
China; cz, Czech Republic; de, Germany; dk, Denmark; es, Spain; fr, France; it,
Italy; jp, Japan; kr, Korea; nl, The Netherlands; no, Norway; pl, Poland; ru,
Russia; se, Sweden; tw, Taiwan; uk, United Kingdom; us, United States.
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sider dense bipartite subgraphs as indications of communities,
and expand such graphs into larger sets with HITS (32). Reddy
and Kitsuregawa (33) propose a related approach that can be
used to identify a hierarchy of communities. Other approaches
include bibliometric methods such as cocitation and biblio-
graphic coupling (34–36), the PageRank algorithm (2), the HITS
algorithm (32), bipartite subgraph identification (11), spreading
activation energy (37), and others (33, 38, 39).

Bipartite subgraph identification, cocitation, and biblio-
graphic coupling are localized approaches that aim to identify
well defined graph structures existing in a narrow region of the
web graph. PageRank, HITS, and spreading activation energy
(SAE) are more global and iteratively propagate weights through
a significant portion of the graph. The weights reflect an estimate
of page importance (PageRank), how authoritative or hub-like
a page is (HITS) or how ‘‘close’’ a candidate page is to a starting
region (SAE). PageRank and HITS are related to spectral graph
partitioning (40), seeking to find ‘‘eigen-web-sites’’ of the web
graph’s adjacency matrix or a simple transformation of it. Both
HITS and PageRank are relatively insensitive to their choice of
parameters, unlike SAE, where results are extremely sensitive to
the choice of parameters (37).

Localized approaches are appealing because the structures
they identify unambiguously have the properties that the algo-
rithms were designed to find. However, one limitation of these
approaches is that they cannot find large related subsets of the
web graph because the localized structures are too small. At the
other extreme, PageRank and HITS operate on large subsets of
the web graph and can identify large collections of web pages that
are related or valuable. One limitation of these methods is that
it may be hard to understand and defend the inclusion of a given
page in the collections that are produced. In practice, HITS and
PageRank are combined with textual content either for prepro-
cessing (HITS) or postprocessing (PageRank) (41).

The current approaches to finding communities work well in
many, but not all, cases, and have not yet moved from research
to widely used products. The approaches often produce some
communities with unexpected or missing members. One diffi-
culty is the definition of a community; different people often
have different opinions on how a set of pages should be grouped
into clusters or communities (29). This is an open area of
research.

Summary
The web offers both great opportunity and great challenge in the
quest for improving our understanding of the world. The com-
bined efforts of many researchers has resulted in several valuable
methods for analysis, and the extraction of a wide variety of
valuable knowledge.

However, there are still many open problems and areas for
future research. Many of the web analysis studies as presented in
this paper provide valuable results for a particular point in time;
however, few of these provide directly comparable results at
different points in time. It would be very interesting to repeat
many of the studies to provide updated analysis, and to provide
additional insight into the evolution of the web. The problem of
uniformly sampling the web is still open in practice: which pages
should be counted, and how can we reduce biases? Web growth
models approximate the true nature of how the web grows: how
can the current models be refined to improve accuracy, while
keeping the models relatively simple and easy to understand and
analyze? Finally, community identification remains an open
area: how can the accuracy of community identification be
improved, and how can communities be best structured or
presented to account for differences of opinion in what is
considered a community?
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